太赫兹科学与电子信息学报2017,Vol.15Issue(1):98-103,6.DOI:10.11805/TKYDA201701.0098
分形分抗逼近电路零极点的数值求解与验证
Numerical solution and verification of zero-pole for some fractal fractance approximation circuits
摘要
Abstract
With the development of the theory of fractance approximation circuits,one of the hot topics is how to solve the zero-pole of the circuits.The precise solution cannot be obtained by companion matrix.To solve the problem,based on the iterative circuit and iterative matrix,numerical solution of normalized zero-pole of fractance approximation circuit is achieved by two functions,"solve" and "roots",in Matrix Laboratory(MATLAB).The accuracy and speed of these two operations are compared.Then the zero-pole is verified by direct ways and indirect ways.The simulation results indicate that the accurate solution is obtained.The solution of zero-pole shows a guiding significance on analyzing the fractance approximation circuits.关键词
分数阶微积分/阻抗函数/迭代矩阵/根的验证/矩阵实验室Key words
fractional calculus/impedance function/iterative matrix/roots checking/Matrix Laboratory分类
信息技术与安全科学引用本文复制引用
易舟,袁晓..分形分抗逼近电路零极点的数值求解与验证[J].太赫兹科学与电子信息学报,2017,15(1):98-103,6.基金项目
成都市科技计划资助项目(12DXYB255JH-002) (12DXYB255JH-002)
四川省科技支撑计划资助项目(2013SZ0071) (2013SZ0071)