| 注册
首页|期刊导航|中国机械工程|基于融合特征约减和支持向量机的控制图模式识别

基于融合特征约减和支持向量机的控制图模式识别

赵春华 汪成康 华露 郑思宇 梁志鹏

中国机械工程2017,Vol.28Issue(8):930-935,6.
中国机械工程2017,Vol.28Issue(8):930-935,6.DOI:10.3969/j.issn.1004-132X.2017.08.009

基于融合特征约减和支持向量机的控制图模式识别

Control Chart Pattern Recognition Based on Fusion Feature Reduction and SVM

赵春华 1汪成康 1华露 1郑思宇 1梁志鹏1

作者信息

  • 1. 三峡大学机械与动力学院,宜昌,443002
  • 折叠

摘要

Abstract

In order to improve the intelligence of quality monitoring in machining processes,the paper proposed a control chart classification method based on fusion feature reduction and KPCA-SVM,on the basis of quality fluctuation which was described by control chart.Firstly,the Monte Carlo method was applied to generate the control chart data sets,statistical features and shape fea-tures were extracted to fuse with original features,then kernel principal component analysis was ap-plied to reduce dimensionality of high dimensional fusion feature sets.Finally,genetic algorithm was used to optimize parameters of SVM.Recognition accuracy were compared through the simulation ex-periments with the applications of dimensionality reduction and different classification models,the re-sults demonstrate that the higher recognition accuracy may be achieved by using the proposed method.

关键词

控制图/模式识别/特征融合/降维/核主成分分析/支持向量机

Key words

control chart/pattern recognition/feature fusion/dimension reduction/kernel prin-cipal component analysis(KPCA)/support vector machine(SVM)

分类

机械制造

引用本文复制引用

赵春华,汪成康,华露,郑思宇,梁志鹏..基于融合特征约减和支持向量机的控制图模式识别[J].中国机械工程,2017,28(8):930-935,6.

基金项目

国家自然科学基金资助项目(51205230) (51205230)

湖北省自然科学基金资助项目(2015CFB445) (2015CFB445)

宜昌市自然基础科学研究与应用项目(A15-302-a02) (A15-302-a02)

赛尔网络下一代互联网技术创新项目(NGⅡ20150801). (NGⅡ20150801)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量0
|
下载量0
段落导航相关论文