| 注册
首页|期刊导航|郑州大学学报(理学版)|一种改进的模糊C均值图像分割算法

一种改进的模糊C均值图像分割算法

刘洪普 杨乐 侯向丹 顾军华

郑州大学学报(理学版)2017,Vol.49Issue(2):66-71,6.
郑州大学学报(理学版)2017,Vol.49Issue(2):66-71,6.DOI:10.13705/j.issn.1671-6841.2016328

一种改进的模糊C均值图像分割算法

An Improved Fuzzy C-means Algorithm for Image Segmentation

刘洪普 1杨乐 2侯向丹 1顾军华1

作者信息

  • 1. 河北工业大学 计算机科学与软件学院 天津300401
  • 2. 河北工业大学 河北省大数据计算重点实验室 天津 300401
  • 折叠

摘要

Abstract

The traditional fuzzy C-means (FCM) image segmentation algorithm suffered from low efficiency and noise susceptibility.An improved fuzzy C-means algorithm for image segmentation was proposed.In the improved algorithm, the greyscale distribution of the original image was used to define the initial cluster centers;then the effects of the neighboring pixels on clustering were considered.Experimental results validated the effectiveness of the proposed method, demonstrating that the automatically chosen cluster centres enhanced the clustering efficiency.Additionally, the method was robust, with the clustering being less affected by noise in the original image.

关键词

模糊C均值/初始聚类中心/图像分割/灰度直方图/邻域

Key words

fuzzy C-means/initial cluster center/image segmentation/greyscale histogram/neighborhood

分类

信息技术与安全科学

引用本文复制引用

刘洪普,杨乐,侯向丹,顾军华..一种改进的模糊C均值图像分割算法[J].郑州大学学报(理学版),2017,49(2):66-71,6.

基金项目

天津市自然科学基金项目(16JCYBJC15600). (16JCYBJC15600)

郑州大学学报(理学版)

OA北大核心CSTPCD

1671-6841

访问量0
|
下载量0
段落导航相关论文