| 注册
首页|期刊导航|郑州大学学报(理学版)|基于NSST变换域WNNM和KAD算法的SAR图像去噪

基于NSST变换域WNNM和KAD算法的SAR图像去噪

赵杰 王配配

郑州大学学报(理学版)2017,Vol.49Issue(2):72-77,6.
郑州大学学报(理学版)2017,Vol.49Issue(2):72-77,6.DOI:10.13705/j.issn.1671-6841.2016320

基于NSST变换域WNNM和KAD算法的SAR图像去噪

SAR Image Denoising Based on NSST with WNNM and KAD

赵杰 1王配配2

作者信息

  • 1. 河北大学 电子信息工程学院 河北 保定 071000
  • 2. 河北省数字医疗工程重点实验室 河北 保定 071000
  • 折叠

摘要

Abstract

The SAR image denoising based on non-subsample shearlet transform with weighted nuclear norm minimization and kernel anisotropic diffusion was presented to minimize the effect of speckle noise in synthetic aperture radar.Firstly, the image global noise variance was estimated in advance.Secondly, multiplicative speckle was changed into additive noise by logarithmic transformation.Thirdly the SAR image was decomposed by no`n-subsample shearlet transform;the high frequency component were processed by kernel anisotropic diffusion;and low frequency component was processed by WNNM algorithm.Finally, the reconstructed image was reconstructed by NSST algorithm.An efficient implementation of this algorithm was presented in full detail.Also the comparison of this improved algorithm with the NSST and WNNM approach were given.The experimental results showed that the peak signal to noise ratio objective indicators had significantly improved, the local structure of the image was better preserved, and the good subjective visual effect was produced.

关键词

合成孔径雷达图像去噪/非下采样剪切波变换/加权核范数最小化/核各向异性扩散

Key words

synthetic aperture radar/non-subsample shearlet transform/weighted nuclear norm minimization/kernel anisotropic diffusion

分类

信息技术与安全科学

引用本文复制引用

赵杰,王配配..基于NSST变换域WNNM和KAD算法的SAR图像去噪[J].郑州大学学报(理学版),2017,49(2):72-77,6.

基金项目

国家自然科学基金项目(61572063,61401308) (61572063,61401308)

河北省自然科学基金项目(F2016201187) (F2016201187)

河北大学自然科学研究计划项目(2014-303) (2014-303)

河北大学研究生创新项目(X2015085). (X2015085)

郑州大学学报(理学版)

OA北大核心CSTPCD

1671-6841

访问量0
|
下载量0
段落导航相关论文