| 注册
首页|期刊导航|北京交通大学学报|基于关系图邻接矩阵逼近的推荐系统

基于关系图邻接矩阵逼近的推荐系统

朱振峰 高红格 赵耀

北京交通大学学报2017,Vol.41Issue(2):1-7,7.
北京交通大学学报2017,Vol.41Issue(2):1-7,7.DOI:10.11860/j.issn.1673-0291.2017.02.001

基于关系图邻接矩阵逼近的推荐系统

Graph adjacency matrix approximation based recommendation system

朱振峰 1高红格 2赵耀3

作者信息

  • 1. 北京交通大学计算机与信息技术学院,北京100044
  • 2. 北京交通大学北京市现代信息科学与网络技术重点实验室,北京100044
  • 折叠

摘要

Abstract

In graph based recommendation methods,the goal of the graph constraint is to preserve the consistency of user relationships (item relationships) between high dimensional user representation space (item representation space) and low dimensional latent user representation space.Instead of applying the traditional Laplacian matrix based consistency constraint,a graph adjacency matrix approximation based recommendation model is proposed.In essence,the matrix approximation plays a role of directly imposing a consistency constraint on the different similarity metric spaces.Thus,not only the consistency of the user relationships (the item relationships) from different representation spaces can be well preserved,but also,the local over-fitting problem can be avoided to some extent.Experimental results on EachMovie and MovieLens datasets show the effectiveness of the proposed method.

关键词

推荐系统/协同过滤/因子分解/图模型/梯度下降法

Key words

recommender system/collaborative filtering/matrix factorization/graph model/gradient descent method

分类

信息技术与安全科学

引用本文复制引用

朱振峰,高红格,赵耀..基于关系图邻接矩阵逼近的推荐系统[J].北京交通大学学报,2017,41(2):1-7,7.

基金项目

国家自然科学基金(61572068,61532005) (61572068,61532005)

教育部新世纪优秀人才支持计划项目(NCET-13-0661) (NCET-13-0661)

中央高校基本科研业务费专项资金(2015JBM039)National Natural Science Foundation of China(61572068,61532005) (2015JBM039)

Program for the New Century Excellent Talents in Universities of China(NCET-13-0661) (NCET-13-0661)

Fundamental Research Funds for the Central Universities(2015JBM039) (2015JBM039)

北京交通大学学报

OA北大核心CSCDCSTPCD

1673-0291

访问量0
|
下载量0
段落导航相关论文