| 注册
首页|期刊导航|北京交通大学学报|生产制造企业网络智能故障诊断算法

生产制造企业网络智能故障诊断算法

李红辉 赵京京 杨芳南

北京交通大学学报2017,Vol.41Issue(2):54-58,5.
北京交通大学学报2017,Vol.41Issue(2):54-58,5.DOI:10.11860/j.issn.1673-0291.2017.02.009

生产制造企业网络智能故障诊断算法

Algorithm of intelligent fault diagnose technology for network of manufacturing enterprise

李红辉 1赵京京 1杨芳南1

作者信息

  • 1. 北京交通大学计算机与信息技术学院,北京100044
  • 折叠

摘要

Abstract

An intelligent fault diagnose algorithm(Classified Sample Random Forest,CSRF) is proposed according to the characteristics of manufacturing enterprise network.The algorithm combines the basic principle of random forest algorithm,using classified sampling technology to generate the required training samples,and largely solved the problem caused by data imbalance.The algorithm can generate the corresponding training data for each classification and regression tree (CART) in random forest,which alleviates the sampling bias and improves the performance of the algorithm.Experiments show that the algorithm improves the accuracy rate by about 4% compared with the random forest algorithm,and reduces the risk of fault diagnosis effectively.

关键词

工业以太网/智能算法/采样算法/随机森林

Key words

industrial ethernet/intelligent algorithm/sampling algorithm/random forest

分类

信息技术与安全科学

引用本文复制引用

李红辉,赵京京,杨芳南..生产制造企业网络智能故障诊断算法[J].北京交通大学学报,2017,41(2):54-58,5.

基金项目

国家科技支撑计划项目(2015BAF08B02,2015BAG12B00)National Key Technology Research and Development Program of China(2015BAF08B02,2015BAG12B00) (2015BAF08B02,2015BAG12B00)

北京交通大学学报

OA北大核心CSCDCSTPCD

1673-0291

访问量0
|
下载量0
段落导航相关论文