| 注册
首页|期刊导航|计算机工程与应用|融入类别信息的图像标注概率主题模型

融入类别信息的图像标注概率主题模型

曹洁 罗菊香 李晓旭

计算机工程与应用Issue(10):187-192,6.
计算机工程与应用Issue(10):187-192,6.DOI:10.3778/j.issn.1002-8331.1512-0234

融入类别信息的图像标注概率主题模型

Image annotation probabilistic topic model fusing class information

曹洁 1罗菊香 2李晓旭1

作者信息

  • 1. 兰州理工大学 计算机与通信学院,兰州 730050
  • 2. 甘肃省制造业信息化工程研究中心,兰州 730050
  • 折叠

摘要

Abstract

ion:The image annotation method based on the probabilistic topic model annotates images by learning the semantic of the image, and researchers pay more and more attention to it in recent years. Class label information can pro-vide the valuable information for image annotation, for example, for images in"tall building"class, annotating"sky","skyscraper"is more possible than annotating"sea"and"beach". However, for images in"coast"class, annotating"sea","beach"is more possible than annotating"sky"and"skyscraper". This paper proposes an image annotation proba-bilistic topic model fusing class information which uses class information to promote image annotation. And it derives a parameters estimation algorithm based on the variational EM algorithm, as well as gives the method annotating the new images. The experimental results on LableMe and UIUC-Sport datasets show that the image annotation performance of the proposed model is better than other contrastive models.

关键词

图像标注/图像类别/变分EM/Corr-LDA模型

Key words

image annotation/image class/variational expectation maximization/Corr-LDA model

分类

信息技术与安全科学

引用本文复制引用

曹洁,罗菊香,李晓旭..融入类别信息的图像标注概率主题模型[J].计算机工程与应用,2017,(10):187-192,6.

基金项目

国家自然科学基金(No.61263031) (No.61263031)

甘肃省自然科学基金(No.1310RJZA034) (No.1310RJZA034)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文