| 注册
首页|期刊导航|计算机工程与应用|改进的强跟踪SVD-UKF算法在组合导航中的应用

改进的强跟踪SVD-UKF算法在组合导航中的应用

孙磊 黄国勇 李越

计算机工程与应用Issue(10):225-229,240,6.
计算机工程与应用Issue(10):225-229,240,6.DOI:10.3778/j.issn.1002-8331.1511-0335

改进的强跟踪SVD-UKF算法在组合导航中的应用

Exploration of improved strong tracking SVD-UKF used in BDS/INS integrated navigation

孙磊 1黄国勇 2李越1

作者信息

  • 1. 昆明理工大学 信息工程与自动化学院,昆明 650500
  • 2. 云南省矿物管道输送工程技术研究中心,昆明 650500
  • 折叠

摘要

Abstract

The performance of the Unscented Kalman filter would be degraded in accuracy or divergences when the sys-tem states are uncertain and strong nonlinear, an improved strong tracking SVD-UKF algorithm is proposed. The iteration of covariance matrix in UKF is improved by Singular Value Decomposition(SVD)of covariance matrix, ensured the sta-bility of the iteration of covariance matrix and restrained the negative definiteness of system state covariance matrix. Mul-tiple fading factors matrices are introduced in improved SVD-UKF, in order to automatic improve system state covariance matrix based on Strong Tracking Filter(STF)theory framework, and realize the strong tracking of the real state while sys-tem status are mutating. The proposed strong tracking SVD-UKF is applied to the BDS/INS integrated system for simula-tion, simulation results show the effectiveness of the presented algorithm.

关键词

无迹卡尔曼滤波(UKF)/奇异值分解(SVD)/强跟踪/渐消因子/组合导航

Key words

Unscented Kalman Filter(UKF)/Singular Value Decomposition(SVD)/strong tracking/fading factor/inte-grated navigation

分类

航空航天

引用本文复制引用

孙磊,黄国勇,李越..改进的强跟踪SVD-UKF算法在组合导航中的应用[J].计算机工程与应用,2017,(10):225-229,240,6.

基金项目

国家自然科学基金资助项目(No.51169007) (No.51169007)

云南省科技计划项目(No.2013CA022,No.2012DA005,No.2011DH034) (No.2013CA022,No.2012DA005,No.2011DH034)

云南省中青年学术和技术带头人后备人才培养计划项目(No.2011CI017). (No.2011CI017)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量2
|
下载量0
段落导航相关论文