| 注册
首页|期刊导航|中国石油大学学报(自然科学版)|基于离散过程神经网络页岩油气储层有机碳含量预测

基于离散过程神经网络页岩油气储层有机碳含量预测

刘志刚 肖佃师 许少华

中国石油大学学报(自然科学版)2017,Vol.41Issue(2):80-87,8.
中国石油大学学报(自然科学版)2017,Vol.41Issue(2):80-87,8.DOI:10.3969/j.issn.1673-5005.2017.02.009

基于离散过程神经网络页岩油气储层有机碳含量预测

Total organic carbon content prediction of shale reservoirs based on discrete process neural network

刘志刚 1肖佃师 2许少华3

作者信息

  • 1. 东北石油大学计算机与信息技术学院,黑龙江大庆163318
  • 2. 中国石油大学非常规油气与新能源研究院,山东青岛266580
  • 3. 山东科技大学信息科学与工程学院,山东青岛266590
  • 折叠

摘要

Abstract

Traditional methods in TOC fitting generally have low precision due to the effects of lithology change.In order to improve TOC fitting precision and to reduce the time cumulative error for continuous signals in the artificial neuron network,an extreme learning discrete process neural network is proposed.A vector form is used to simulate the process input in the model.The time domain aggregation for discrete data input is controlled by the parabolic interpolation using numerical integration in the discrete process neuron.Through analysis of structure of discrete process neuron,an extreme learning algorithm is proposed.The parameters of the hidden layer are randomly assigned and the Moore-Penrose generalized inverse is used to compute the output weights.The method is applied to TOC fitting and prediction usingsome logging curves which have most sensitive response for TOC.The TOC fitting results are compared with the traditional methods and other neural network.The results show that the proposed method has higher fitting precision and faster learning speed,and the predicted TOC and actual TOC have better correlations.

关键词

总有机碳/离散过程神经网络/网络训练/Moore-Penrose广义逆

Key words

total organic carbon/discrete process neural network/network training/Moore-Penrose generalized inverse

分类

能源科技

引用本文复制引用

刘志刚,肖佃师,许少华..基于离散过程神经网络页岩油气储层有机碳含量预测[J].中国石油大学学报(自然科学版),2017,41(2):80-87,8.

基金项目

国家自然科学基金项目(41602141,41402109,41330313) (41602141,41402109,41330313)

中国石油大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1673-5005

访问量0
|
下载量0
段落导航相关论文