| 注册
首页|期刊导航|吉林大学学报(理学版)|一类带负交叉扩散项二维系统的空间Turing斑图

一类带负交叉扩散项二维系统的空间Turing斑图

张道祥 赵李鲜 孙光讯 周文 于艳

吉林大学学报(理学版)2017,Vol.55Issue(3):537-546,10.
吉林大学学报(理学版)2017,Vol.55Issue(3):537-546,10.DOI:10.13413/j.cnki.jdxblxb.2017.03.13

一类带负交叉扩散项二维系统的空间Turing斑图

Spatial Turing Pattern of a Class of Two Dimensional System with Negative Cross-Diffusion

张道祥 1赵李鲜 2孙光讯 1周文 1于艳1

作者信息

  • 1. 安徽师范大学 数学计算机科学学院,安徽 芜湖 241003
  • 2. 赫尔辛基大学 数学与统计学院,芬兰 赫尔辛基 00014
  • 折叠

摘要

Abstract

We considered the generation and selection of Turing pattern of a class of two dimensional system with negative cross-diffusion.Firstly,the existence region of Turing pattern was obtained by using stability theory and Hopf bifurcation theory.Secondly,the amplitude equations of the system were derived by using multi-scales analysis method,and the selection result of Turing pattern was given.Finally,we considered a specific ecosystem with a ratio dependent Holling-Tanner predator-prey model.MATLAB software was used to simulate the pattern generation and selection results of the model,and the different types of Turing patterns,such as dot,strip and the coexistence of the two types were obtained.

关键词

二维系统/负交叉扩散系数/振幅方程/Turing斑图

Key words

two dimensional system/negative cross-diffusion coefficient/amplitude equation/Turing pattern

分类

数理科学

引用本文复制引用

张道祥,赵李鲜,孙光讯,周文,于艳..一类带负交叉扩散项二维系统的空间Turing斑图[J].吉林大学学报(理学版),2017,55(3):537-546,10.

基金项目

国家自然科学基金青年基金(批准号:11302002)和国家级大学生创新创业训练计划项目(批准号:201610370002). (批准号:11302002)

吉林大学学报(理学版)

OA北大核心CSCDCSTPCD

1671-5489

访问量3
|
下载量0
段落导航相关论文