| 注册
首页|期刊导航|工矿自动化|煤与矸石图像纹理特征提取方法

煤与矸石图像纹理特征提取方法

米强 徐岩 刘斌 徐运杰

工矿自动化2017,Vol.43Issue(5):26-30,5.
工矿自动化2017,Vol.43Issue(5):26-30,5.DOI:10.13272/j.issn.1671-251x.2017.05.007

煤与矸石图像纹理特征提取方法

Extraction method of texture feature of images of coal and gangue

米强 1徐岩 1刘斌 1徐运杰1

作者信息

  • 1. 山东科技大学电子通信与物理学院,山东青岛 266590
  • 折叠

摘要

Abstract

In view of problems of less extraction feature parameters and low recognition precision existed in image processing methods of coal and gangue,an extraction method of texture feature of images of coal and gangue fused with local binary pattern and gray level co-occurrence matrix was proposed.Firstly,the preprocessed images of coal and gangue were transformed into local binary pattern images,then the local binary pattern images were used to generate gray level co-occurrence matrix,the mean value and normalization of those texture features including angular second moment,correlation,contrast and entropy were processed.Finally,support vector machine was used for samples training and recognition results were obtained.The experimental results show that the method can effectively extract the texture feature of images of coal and gangue,and the recognition rates of coal and gangue are respectively 94% and 96%.

关键词

煤与矸石/图像处理/纹理特征/局部二值模式/灰度共生矩阵/支持向量机

Key words

coal and gangue/image processing/texture feature/local binary pattern/gray level co-occurrence matrix/support vector machine

分类

矿业与冶金

引用本文复制引用

米强,徐岩,刘斌,徐运杰..煤与矸石图像纹理特征提取方法[J].工矿自动化,2017,43(5):26-30,5.

基金项目

山东省研究生教育创新计划项目(01040105305) (01040105305)

山东科技大学教学研究项目(JG201506) (JG201506)

山东科技大学研究生教育创新项目(KDYC13026,KDYC15019). (KDYC13026,KDYC15019)

工矿自动化

OA北大核心CSTPCD

1671-251X

访问量0
|
下载量0
段落导航相关论文