| 注册
首页|期刊导航|数据采集与处理|低资源语音识别若干关键技术研究进展

低资源语音识别若干关键技术研究进展

刘加 张卫强

数据采集与处理2017,Vol.32Issue(2):205-220,16.
数据采集与处理2017,Vol.32Issue(2):205-220,16.DOI:10.16337/j.1004-9037.2017.02.001

低资源语音识别若干关键技术研究进展

Research Progress on Key Technologies of Low Resource Speech Recognition

刘加 1张卫强1

作者信息

  • 1. 清华大学电子工程系,北京,100084
  • 折叠

摘要

Abstract

Low resource speech recognition is one of currently researching hotspots in speech recognition community,and is also one of the important challenges for the application of multilingual and minority language speech recognition technologies.This paper summarizes and reviews the current states and history of low resource speech recognition,and introduces several key technologies,including articulatory feature,multilingual bottleneck feature,subspace Gaussian mixture model,convolutional neural network based acoustic model and recurrent neural network based language model.After that the open keyword search (OpenKWS) evaluation is introduced.Finally,the prospective of low resource speech recognition is presented.

关键词

语音识别/低资源/声学模型/语言模型

Key words

speech recognition/low resource/acoustic model/language model

分类

信息技术与安全科学

引用本文复制引用

刘加,张卫强..低资源语音识别若干关键技术研究进展[J].数据采集与处理,2017,32(2):205-220,16.

基金项目

国家自然科学基金(61370034,61403224)资助项目. (61370034,61403224)

数据采集与处理

OA北大核心CSCDCSTPCD

1004-9037

访问量2
|
下载量0
段落导航相关论文