| 注册
首页|期刊导航|数据采集与处理|基于深度学习的语音识别技术现状与展望

基于深度学习的语音识别技术现状与展望

戴礼荣 张仕良 黄智颖

数据采集与处理2017,Vol.32Issue(2):221-231,11.
数据采集与处理2017,Vol.32Issue(2):221-231,11.DOI:10.16337/j.1004-9037.2017.02.002

基于深度学习的语音识别技术现状与展望

Deep Learning for Speech Recognition: Review of State-of-the-Arts Technologies and Prospects

戴礼荣 1张仕良 1黄智颖1

作者信息

  • 1. 中国科学技术大学语音与语言信息处理国家工程实验室,合肥,230027
  • 折叠

摘要

Abstract

In this paper,deep learning is briefly introduced.Then,a review of the research progress of deep learning based speech recognition is presented from the following five points:Training criterions for deep learning based acoustic models,different model architectures for deep learning based speech recognition acoustic modeling,scalable and distributed optimization methods for deep learning based acoustic model training,speaker adaptation for deep learning based acoustic model,and deep leaning based end-to-end speech recognition.At the end of this paper,the future possible research points of deep learning based speech recognition are also proposed.

关键词

深度学习/深度神经网络/语音识别/说话人自适应

Key words

deep learning/deep neural network/speech recognition/speaker adaptation

分类

信息技术与安全科学

引用本文复制引用

戴礼荣,张仕良,黄智颖..基于深度学习的语音识别技术现状与展望[J].数据采集与处理,2017,32(2):221-231,11.

基金项目

安徽省科技重大专项(15czz02007)资助项目 (15czz02007)

国家重点研发计划(2016YFB1001300)资助项目. (2016YFB1001300)

数据采集与处理

OA北大核心CSCDCSTPCD

1004-9037

访问量0
|
下载量0
段落导航相关论文