| 注册
首页|期刊导航|智能系统学报|一种改进的搜索密度峰值的聚类算法

一种改进的搜索密度峰值的聚类算法

淦文燕 刘冲

智能系统学报2017,Vol.12Issue(2):229-236,8.
智能系统学报2017,Vol.12Issue(2):229-236,8.DOI:10.11992/tis.201512036

一种改进的搜索密度峰值的聚类算法

An improved clustering algorithm that searches and finds density peaks

淦文燕 1刘冲1

作者信息

  • 1. 解放军理工大学 指挥信息系统学院,江苏 南京 210007
  • 折叠

摘要

Abstract

Clustering is a fundamental issue for big data analysis and data mining.In July 2014, a paper in the Journal of Science proposed a simple yet effective clustering algorithm based on the idea that cluster centers are characterized by a higher density than their neighbors and having a relatively large distance from points with higher densities.The proposed algorithm can detect clusters of arbitrary shapes and differing densities but is very sensitive to tunable parameter dc.In this paper, we propose an improved clustering algorithm that adaptively optimizes parameter dc.The time complexity of our algorithm was super-linear with respect to the size of the dataset.Further, our theoretical analysis and experimental results show the effectiveness and efficiency of our improved algorithm.

关键词

数据挖掘/聚类算法/核密度估计/

Key words

data mining/clustering algorithms/kernel density estimation/entropy

分类

信息技术与安全科学

引用本文复制引用

淦文燕,刘冲..一种改进的搜索密度峰值的聚类算法[J].智能系统学报,2017,12(2):229-236,8.

基金项目

国家自然科学基金项目(60974086). (60974086)

智能系统学报

OA北大核心CSCDCSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文