| 注册
首页|期刊导航|重庆理工大学学报(自然科学版)|基于改进的卷积神经网络的图像分类性能

基于改进的卷积神经网络的图像分类性能

常祥 杨明

重庆理工大学学报(自然科学版)2017,Vol.31Issue(3):110-115,6.
重庆理工大学学报(自然科学版)2017,Vol.31Issue(3):110-115,6.DOI:10.3969/j.issn.1674-8425(z).2017.03.016

基于改进的卷积神经网络的图像分类性能

Research on Image Classification Performance Based on Improved Convolution Neural Network

常祥 1杨明2

作者信息

  • 1. 中北大学信息探测与处理山西省重点实验室,太原030051
  • 2. 中北大学理学院,太原030051
  • 折叠

摘要

Abstract

An improved convolution neural network is applied to image object recognition.In order to improve the accuracy of classification prediction,this paper improves the structure of the basic convolution neural network.The concrete structure is as follows:Convolution layer C1-Pool layer S1-Convolution layer C2-Pool layer S2-Convolution layer C3-pool Layer S3-full-connect layer FC-output,ant it mainly increased the number of convolution layers,and unified selection of 5 × 5 in the convolution filter specification.Finally,this model is compared with other models (ReNet,APAC,PACNet) for CIFAR-10 database.Through the final prediction accuracy,it can be seen that the improved convolutional nerve has a better precision of 90.37% than the other three models.

关键词

卷积神经网络/图像分类技术/卷积层/池化层

Key words

convolution neural network/image classification technique/convolution layer/pooling layer

分类

信息技术与安全科学

引用本文复制引用

常祥,杨明..基于改进的卷积神经网络的图像分类性能[J].重庆理工大学学报(自然科学版),2017,31(3):110-115,6.

基金项目

国家自然科学基金资助项目(61171179) (61171179)

重庆理工大学学报(自然科学版)

OA北大核心CSTPCD

1674-8425

访问量4
|
下载量0
段落导航相关论文