| 注册
首页|期刊导航|电子学报|基于非局部相似块低秩的压缩感知图像重建算法

基于非局部相似块低秩的压缩感知图像重建算法

宋云 李雪玉 沈燕飞 杨高波

电子学报2017,Vol.45Issue(3):695-703,9.
电子学报2017,Vol.45Issue(3):695-703,9.DOI:10.3969/j.issn.0372-2112.2017.03.029

基于非局部相似块低秩的压缩感知图像重建算法

Compressed Sensing Image Reconstruction Based on Low Rank of Non-local Similar Patches

宋云 1李雪玉 2沈燕飞 3杨高波1

作者信息

  • 1. 长沙理工大学综合交通运输大数据智能处理湖南省重点实验室,湖南长沙410114
  • 2. 长沙理工大学计算机与通信工程学院,湖南长沙410114
  • 3. 湖南大学信息科学与工程学院,湖南长沙410012
  • 折叠

摘要

Abstract

Generally,traditional compressed sensing (CS) image recovery methods build the objective optimization function by using the signal sparsity in some specific feature spaces.They do not fully take the local features and structural properties of signal into account,which leads to constraints of the recovery performance and flexibility.In this paper,considering the non-local self-similarity (NLSS) in images,we propose an image CS reconstruction method based on the image low-rank property by converting the CS recovery problem into a matrix rank minimization problem of aggregating similar image patches.The proposed algorithm builds optimization model under the constraint of minimal recovery errors and employs the weighed nuclear norm minimization (WNNM) method to solve the low-rank optimization problem.By taking advantage of them,the proposed method exploits the self-information and structured sparse characteristics of the image very well,and therefore provides a better protection of image structures and textures.Experiments on different test images under various sampling rates have shown the effectiveness of the proposed algorithm.Especially,for richly-textured images,our method outperforms the art-of-the-state algorithms significantly under low sampling rates.

关键词

压缩感知/图像重建/非局部白相似/低秩优化

Key words

compressive sensing/image recovery/non-local self-similarity/low-rank optimization

分类

信息技术与安全科学

引用本文复制引用

宋云,李雪玉,沈燕飞,杨高波..基于非局部相似块低秩的压缩感知图像重建算法[J].电子学报,2017,45(3):695-703,9.

基金项目

国家自然科学基金(No.61471343,No.61572183,No.61402053) (No.61471343,No.61572183,No.61402053)

湖南省教育厅科学研究重点项目(No.13A107,No.15A007) (No.13A107,No.15A007)

湖南省自然科学基金(No.2016JJ2005) (No.2016JJ2005)

湖南省科技计划项目(No.2014FJ6047,No.2014GK3030) (No.2014FJ6047,No.2014GK3030)

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文