数学杂志2017,Vol.37Issue(3):580-590,11.
Kaup-Newell族的分数阶非线性双可积耦合及其Hamilton结构
THE FRACTIONAL NOLINEAR BI-INTEGRABLE COUPLINGS OF KAUP-NEWELL HIERARCHY AND ITS HAMILTONIAN STRUCTURES
摘要
Abstract
In this paper, we study the fractional nolinear bi-integrable couplings of Kaup-Newell hierarchy. By using fractional isospectral problems and non-semisimple matrix Lie algebras on which there exist non-degenerate, symmetric and ad-invariant bilinear forms, the fractional nonlinear bi-integrable couplings of Kaup-Newell hierarchy are presented. Furthermore, we also obtained the fractional Hamiltonian structures of the fractional integrable couplings of Kaup-Newell hierarchy. The methods derived by us can be generalized to other fractional integrable couplings of soliton hierarchy.关键词
矩阵Lie代数/Kaup-Newell族/双可积耦合/分数阶Hamilton结构Key words
matrix Lie algebras/Kaup-Newell hierarchy/bi-integrable couplings/fractional Hamiltonian structures分类
数理科学引用本文复制引用
魏含玉,李春丽,夏铁成..Kaup-Newell族的分数阶非线性双可积耦合及其Hamilton结构[J].数学杂志,2017,37(3):580-590,11.基金项目
Supported by National Natural Science Foundation of China (11547175 ()
11271008 ()
11501526) ()
The Key Scientific Research Pro jects of Henan Province (16A110026). (16A110026)