| 注册
首页|期刊导航|微型电脑应用|PACS系统中的图像可识别特征分割方法研究与分析

PACS系统中的图像可识别特征分割方法研究与分析

王松山 傅新镇 李强

微型电脑应用2017,Vol.33Issue(4):35-38,4.
微型电脑应用2017,Vol.33Issue(4):35-38,4.

PACS系统中的图像可识别特征分割方法研究与分析

Research and analysis of image recognition feature segmentation method in PACS system

王松山 1傅新镇 1李强1

作者信息

  • 1. 滨州市人民医院,滨州256610
  • 折叠

摘要

Abstract

In order to solve the problems of low accuracy and low efficiency in traditional image segmentation methods,a new method based on the combination of directional spatial relation and local gray clustering model is proposed.Based on the detection of the feature points of the image,an image recognition feature contour model is established.Gradient descent method is used to extract the feature of image recognition.On this basis,by the relationship between the characteristics of image recognition and the space using local gray clustering model and image recognition features through local gray clustering,the image recognition feature segmentation method is improved.The experimental results show that the segmentation accuracy,the time required for segmentation,and the segmentation efficiency are better than the traditional segmentation method,hence,it has some advantages.

关键词

PACS系统/图像/特征/分割方法

Key words

PACS system/Image/recognition/Feature/Segmentation method

分类

信息技术与安全科学

引用本文复制引用

王松山,傅新镇,李强..PACS系统中的图像可识别特征分割方法研究与分析[J].微型电脑应用,2017,33(4):35-38,4.

微型电脑应用

OACSTPCD

1007-757X

访问量0
|
下载量0
段落导航相关论文