| 注册
首页|期刊导航|计算机工程与应用|稀疏降噪自编码器在IR-BCI的应用研究

稀疏降噪自编码器在IR-BCI的应用研究

赵瑞娟 官金安 谢国栋

计算机工程与应用2017,Vol.53Issue(11):167-171,5.
计算机工程与应用2017,Vol.53Issue(11):167-171,5.DOI:10.3778/j.issn.1002-8331.1610-0117

稀疏降噪自编码器在IR-BCI的应用研究

Research of IR-BCI based on sparse de-noising autoencoder

赵瑞娟 1官金安 2谢国栋1

作者信息

  • 1. 中南民族大学 医学信息分析及肿瘤诊疗湖北省重点实验室,武汉 430074
  • 2. 中南民族大学 认知科学国家民委重点实验室,武汉 430074
  • 折叠

摘要

Abstract

To solve the problem of features extraction in Brain Computer Interface(BCI), the paper presents a Sparse De-noising Auto-Encoder(SDAE)based on unsupervised learning theory. This method can learn features of brain electrical signal induced by stimulation and explore the deep features of the raw data. The SDAE, a Sparse Autoencoder(SAE)neu-ral network by adding noise at the preprocessing, can enhance the generalization ability of learning and improve the ro-bustness of the neural network. In the experiments, the multi-channel signals are reassembled firstly, and a sparse feature expression of raw data is built by using the SDAE. Then the Support Vector Machines(SVMs)classify the learned fea-tures. Finally, the classification accuracies are compared with those of optimal-single-channel method. The experimental results show that the classification accuracies of SDAE are superior to the optimal-single-channel method, so the SDAE can extract better features, improve the recognition accuracy of the"imitating reading"BCI, thus the method provides a new way of features extraction and classification on the BCI system.

关键词

模拟阅读/脑-机接口/非监督学习/稀疏降噪自编码器/支持向量机

Key words

imitating reading/Brain Computer Interface(BCI)/unsupervised learning/Sparse De-noising Auto-Encoder (SDAE)/Support Vector Machines(SVMs)

分类

信息技术与安全科学

引用本文复制引用

赵瑞娟,官金安,谢国栋..稀疏降噪自编码器在IR-BCI的应用研究[J].计算机工程与应用,2017,53(11):167-171,5.

基金项目

国家自然科学基金(No.91120017,No.81271659) (No.91120017,No.81271659)

中央高校基本科研业务费资助项目(No.CZY13031). (No.CZY13031)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文