| 注册
首页|期刊导航|计算机应用研究|基于暗通道先验和核回归的图像去雾研究

基于暗通道先验和核回归的图像去雾研究

乔伟伟 谢从华 刘永俊 王晓楠 姚宇峰

计算机应用研究2017,Vol.34Issue(4):1277-1280,4.
计算机应用研究2017,Vol.34Issue(4):1277-1280,4.DOI:10.3969/j.issn.1001-3695.2017.04.073

基于暗通道先验和核回归的图像去雾研究

Research of image dehazing based on darkness-channel prior knowledge and kernel regression

乔伟伟 1谢从华 2刘永俊 2王晓楠 2姚宇峰2

作者信息

  • 1. 苏州大学计算机科学与技术学院,江苏苏州215006
  • 2. 常熟理工学院计算机科学与工程学院,江苏苏州215500
  • 折叠

摘要

Abstract

In view of the problem that atmospheric scattering degraded image quality in the hazy weather,this paper proposed a research of image dehazing based on darkness-channel prior knowledge and kernel regression theory.Firstly,it estimated atmospheric light intensity and initial transmission rate in terms of darkness channel prior theory.Secondly,it adopted the kernel regression method to refine initial transmission rate.Finally,it used transmission rate refined and atmospheric light intensity estimated to restore the haze image.According to a large number of experimental data,it shows that this research can remove the fog of image effectively.Compared with the most advanced methods,the image processed by this algorithm not only retains more details of the original image,but also improves the image definition largely.

关键词

暗通道先验/核回归/透射率/大气光强度

Key words

darkness-channel prior knowledge/kernel regression theory/transmission rate/atmospheric light intensity

分类

信息技术与安全科学

引用本文复制引用

乔伟伟,谢从华,刘永俊,王晓楠,姚宇峰..基于暗通道先验和核回归的图像去雾研究[J].计算机应用研究,2017,34(4):1277-1280,4.

基金项目

国家自然科学基金资助项目(61402204) (61402204)

江苏省自然科学基金资助项目(BK2012209,BK20130529) (BK2012209,BK20130529)

苏州市科技发展计划项目(SYG201409) (SYG201409)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文