| 注册
首页|期刊导航|计算机应用与软件|基于谐波小波包和DAG-RVM的滚动轴承故障诊断

基于谐波小波包和DAG-RVM的滚动轴承故障诊断

齐磊 王海瑞 李宇芳 李英 任玉卿

计算机应用与软件2017,Vol.34Issue(5):61-67,103,8.
计算机应用与软件2017,Vol.34Issue(5):61-67,103,8.DOI:10.3969/j.issn.1000-386x.2017.05.011

基于谐波小波包和DAG-RVM的滚动轴承故障诊断

FAULT DIAGNOSIS OF ROLLING BEARING BASED ON HARMONIC WAVELET PACKET AND DAG-RVM

齐磊 1王海瑞 1李宇芳 1李英 1任玉卿1

作者信息

  • 1. 昆明理工大学信息工程与自动化学院 云南 昆明 650500
  • 折叠

摘要

Abstract

In view of the traditional rolling bearing fault diagnosis methods is affected by human factors, and the cause of the fault is relatively complex.Based on the existing research, a fault diagnosis method based on wavelet packet analysis and acyclic graph relevance vector machine is proposed in this paper.The vibration signals of the rolling bearing under different fault conditions are decomposed and reconstructed by harmonic wavelet packet, and the frequency band energy is extracted as feature vector.The mapping from feature vector to fault mode is established by using acyclic graph relevance vector machine, finally the fault diagnosis of rolling bearing is solved.The results show that this method can quickly and accurately diagnose rolling bearing faults, and verify the effectiveness and stability of the method.In addition,compared with SVM,it shows the superiority of RVM in intelligent fauk diagnosis application.

关键词

谐波小波包/有向无环图/相关向量机/故障诊断

Key words

Harmonic wavelet packet/Directed acyclic graph/Relevance vector machine/Fault diagnosis

分类

信息技术与安全科学

引用本文复制引用

齐磊,王海瑞,李宇芳,李英,任玉卿..基于谐波小波包和DAG-RVM的滚动轴承故障诊断[J].计算机应用与软件,2017,34(5):61-67,103,8.

基金项目

国家自然科学基金项目(61263023). (61263023)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文