| 注册
首页|期刊导航|森林工程|基于灰度共生矩阵和模糊BP神经网络的木材缺陷识别

基于灰度共生矩阵和模糊BP神经网络的木材缺陷识别

牟洪波 王世伟 戚大伟 倪海明

森林工程2017,Vol.33Issue(4):40-43,54,5.
森林工程2017,Vol.33Issue(4):40-43,54,5.

基于灰度共生矩阵和模糊BP神经网络的木材缺陷识别

Wood Defects Recognition Based on Gray-level Co-occurrence Matrix and Fuzzy BP Neural Network

牟洪波 1王世伟 1戚大伟 1倪海明1

作者信息

  • 1. 东北林业大学 理学院,哈尔滨 150040
  • 折叠

摘要

Abstract

It is important to enhance the accuracy in wood defects detection against the serious shortage of wood resources situation.Wood defects images were acquired by X-ray nondestructive testing technology.Feature vector which was the major characteristics of images could be effectively extracted by gray level co-occurrence matrix.At the same time,the fuzzy BP neural network(FBP)was designed by the combination of fuzzy mathematics and BP neural network.The maximum membership degree principle was used to do the pattern recognition of feature vectors,and then the automatic recognition and classification of wood defects could be realized.After a lot of training,results showed that the average recognition rate of FBP is above 90%.Therefore,FBP has a high recognition accuracy for wood defects,which can provide an important theoretical basis for defects identification.

关键词

木材缺陷/灰度共生矩阵/特征提取/模糊BP神经网络

Key words

Wood defects/GLCM/feature extraction/fuzzy BP neural network

分类

农业科技

引用本文复制引用

牟洪波,王世伟,戚大伟,倪海明..基于灰度共生矩阵和模糊BP神经网络的木材缺陷识别[J].森林工程,2017,33(4):40-43,54,5.

基金项目

国家自然科学基金项目(31570712) (31570712)

黑龙江省自然科学基金项目(C201338) (C201338)

森林工程

OACSTPCD

1001-005X

访问量0
|
下载量0
段落导航相关论文