| 注册
首页|期刊导航|西安石油大学学报(自然科学版)|基于BP神经网络的天然气集输管道结垢预测

基于BP神经网络的天然气集输管道结垢预测

袁兆祺 李长俊 杜强 贾文龙

西安石油大学学报(自然科学版)2017,Vol.32Issue(3):78-82,5.
西安石油大学学报(自然科学版)2017,Vol.32Issue(3):78-82,5.DOI:10.3969/j.issn.1673-064X.2017.03.012

基于BP神经网络的天然气集输管道结垢预测

Scaling Prediction of Natural Gas Gathering Pipeline Based on BP Neural Network

袁兆祺 1李长俊 1杜强 2贾文龙1

作者信息

  • 1. 西南石油大学石油与天然气工程学院,四川成都610500
  • 2. 西南油气田分公司川西北气矿,四川成都610500
  • 折叠

摘要

Abstract

The ion composition and concentration of the produced water from Qiongxi block of Northwest Sichuan Gas Field were determined,and based on this,the natural gas pipeline scaling prediction model based on BP neural network was established,and the layer number,the input vectors,the output vectors,the training function,the hidden layer node number,the parameter weights and thresholds of the model were determined.The accuracy of the established BP neural network model was verified by field test data.It is shown that the scaling tendency of the natural gas gathering pipeline in Qiongxi block can be accurately predicted by the BP neural network whose input parameters are the ion concentration,temperature,pressure,pH value,salinity and flow rate of oilfield produced water.

关键词

天然气集输管道/管道结垢预测/结垢影响因素/BP神经网络

Key words

natural gas gathering pipeline of pipeline/scaling prediction of pipeline/scaling influence factor/BP neural network

分类

能源科技

引用本文复制引用

袁兆祺,李长俊,杜强,贾文龙..基于BP神经网络的天然气集输管道结垢预测[J].西安石油大学学报(自然科学版),2017,32(3):78-82,5.

基金项目

国家自然科学基金项目“高含硫天然气集输管道硫沉积机理与预测方法研究”(编号:51674213) (编号:51674213)

西安石油大学学报(自然科学版)

OA北大核心CSTPCD

1673-064X

访问量0
|
下载量0
段落导航相关论文