| 注册
首页|期刊导航|重庆大学学报|改进的粒子群算法及在数值函数优化中应用

改进的粒子群算法及在数值函数优化中应用

李建平 宫耀华 卢爱平 李盼池

重庆大学学报2017,Vol.40Issue(5):95-103,9.
重庆大学学报2017,Vol.40Issue(5):95-103,9.DOI:10.11835/j.issn.1000-582X.2017.05.012

改进的粒子群算法及在数值函数优化中应用

Application of improved particle swarm optimization to numerical function optimization

李建平 1宫耀华 1卢爱平 1李盼池1

作者信息

  • 1. 东北石油大学计算机与信息技术学院,黑龙江大庆163318
  • 折叠

摘要

Abstract

To enhance the optimization ability of the particle swarm optimization (PSO),an improved PSO algorithm was proposed in this paper.In the proposed approach,the Beta distribution function is used to initialize population,and the inverse incomplete gamma function is used to update the inertia weight.For adjustment of velocity,a new operator based on differential evolution is introduced.For cross-border processing of particles,a new method based on boundary symmetry mapping is designed.With taking 50 different types of benchmark functions as optimization examples,the experimental results based on the Wilcoxon-Signed rank test show that the proposed algorithm is obviously superior to the common PSO,differential evolution,attificial bee colony algorithm and quantum-behaved particle swarm optimization algorithm.

关键词

粒子群优化/Beta分布函数/逆不完全伽马函数/数值优化/算法设计

Key words

particle swarm optimization/Beta distribution function/inverse incomplete gamma function/numerical optimization/algorithm design

分类

信息技术与安全科学

引用本文复制引用

李建平,宫耀华,卢爱平,李盼池..改进的粒子群算法及在数值函数优化中应用[J].重庆大学学报,2017,40(5):95-103,9.

基金项目

中国石油科技创新基金资助项目(2016D-5007-0302).Supported by PetroChina Innovation Foundation (2016D-5007-0302). (2016D-5007-0302)

重庆大学学报

OA北大核心CSCDCSTPCD

1000-582X

访问量0
|
下载量0
段落导航相关论文