| 注册
首页|期刊导航|广东工业大学学报|基于正交投影的降维分类方法研究

基于正交投影的降维分类方法研究

滕少华 卢东略 霍颖翔 张巍

广东工业大学学报2017,Vol.34Issue(3):1-7,7.
广东工业大学学报2017,Vol.34Issue(3):1-7,7.DOI:10.12052/gdutxb.170008

基于正交投影的降维分类方法研究

Classification Method Based on Dimension Reduction

滕少华 1卢东略 1霍颖翔 1张巍1

作者信息

  • 1. 广东工业大学 计算机学院,广东 广州 510006
  • 折叠

摘要

Abstract

Data mining algorithm in the era of big data needs to be able to efficiently deal with massive data. Traditional classification algorithms take a long time to train a model and classify the test dataset, and the algorithm is difficult to understand. To deal with the problems, a classification method based on dimension reduction is proposed in this paper. The multidimensional classification problem is transformed into multiple 2D projection surface combination by projection, and a density model of the projection surface is trained for classification. Compared with Support Vector Machines (SVM), Logistic Regression (LR), K-Nearest Neighbor (KNN) and other algorithms, the classification method based on dimension reduction has higher training efficiency and classification efficiency without loss of accuracy. The method is easy to implement, so it can be used for real-time application, such as intrusion detection and traffic scheduling.

关键词

数据挖掘/分类/正交投影/降维

Key words

data mining/classification/orthogonal projection/dimension reduction

分类

信息技术与安全科学

引用本文复制引用

滕少华,卢东略,霍颖翔,张巍..基于正交投影的降维分类方法研究[J].广东工业大学学报,2017,34(3):1-7,7.

基金项目

国家自然科学基金资助项目(61402118,61673123) (61402118,61673123)

广东省科技计划项目(2015B090901016,2016B010108007) (2015B090901016,2016B010108007)

广东省教育厅项目(粤教高函2015[133]号,粤教高函〔2014〕97号) (粤教高函2015[133]号,粤教高函〔2014〕97号)

广州市科技计划项目(201604020145,2016201604030034, 201508010067) (201604020145,2016201604030034, 201508010067)

广东工业大学学报

1007-7162

访问量0
|
下载量0
段落导航相关论文