| 注册
首页|期刊导航|计算机工程与应用|集体表示分类方法及在人脸识别中的应用

集体表示分类方法及在人脸识别中的应用

马腾飞 王丽平

计算机工程与应用2017,Vol.53Issue(12):16-20,98,6.
计算机工程与应用2017,Vol.53Issue(12):16-20,98,6.DOI:10.3778/j.issn.1002-8331.1702-0140

集体表示分类方法及在人脸识别中的应用

Joint-collective representation classification method and application in face recogni-tion

马腾飞 1王丽平1

作者信息

  • 1. 南京航空航天大学 理学院,南京 210016
  • 折叠

摘要

Abstract

Recently, representation-based classifications, such as Sparse Representation Classification(SRC), Collabora-tive Representation Classification(CRC), etc. have attracted extensive attention. These methods use a single picture to recognize the testing subject but ignore the relationship among a collection of pictures which lead to inadequate details. To take advantage of the correlation of multiple images, this paper presents a collective representation classification in face recognition. The new method uses a matrix to represent all the testing images then the most compact representation error is evaluated for classification. Multi-representation helps to take account of the similarity and difference hidden in the testing image-set. Especially when the image set includes more side-face images than frontal ones, Joint-collective Representation Classification(JRC)outperforms the state-of-the-art method which is also validated by the practical experiments in two public databases.

关键词

集体表示/人脸识别/稀疏优化

Key words

joint-collective representation/face recognition/sparse optimization

分类

信息技术与安全科学

引用本文复制引用

马腾飞,王丽平..集体表示分类方法及在人脸识别中的应用[J].计算机工程与应用,2017,53(12):16-20,98,6.

基金项目

国家自然科学基金(No.11471159,No.61661136001). (No.11471159,No.61661136001)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文