| 注册
首页|期刊导航|计算机工程与应用|最小冗余最大分离准则特征选择方法

最小冗余最大分离准则特征选择方法

赖学方 贺兴时

计算机工程与应用2017,Vol.53Issue(12):70-75,6.
计算机工程与应用2017,Vol.53Issue(12):70-75,6.DOI:10.3778/j.issn.1002-8331.1605-0185

最小冗余最大分离准则特征选择方法

Method based on minimum redundancy and maximum separability for feature selec-tion

赖学方 1贺兴时1

作者信息

  • 1. 西安工程大学 理学院,西安 710048
  • 折叠

摘要

Abstract

Feature selection is an effective technique for analyzing high-dimensional data. To improve the performance of traditional feature selection methods, a novel criterion function named minimum redundancy and maximum separability for feature selection is proposed by combining the F-score and mutual information. Based on the new criterion function, the features select own a better ability for classification and prediction. Binary cuckoo search algorithm and quadratic pro-gramming algorithm are adopted to search the optimal subset of features, the accuracy and the amount of computations for feature selection of these two search strategies are analyzed. Finally, the effectiveness of the proposed principle is verified by the experimental results though conducting tests on UCI datasets.

关键词

高维数据/费希尔得分/搜索策略/特征选择

Key words

high-dimensional data/F-score/search strategy/feature selection

分类

信息技术与安全科学

引用本文复制引用

赖学方,贺兴时..最小冗余最大分离准则特征选择方法[J].计算机工程与应用,2017,53(12):70-75,6.

基金项目

陕西省软科学研究项目(No.2014KRM28-01) (No.2014KRM28-01)

陕西省教育厅专项科研计划项目(No.16JK1341) (No.16JK1341)

西安市2015基础教育研究重大招标项目(No.2015ZB-ZY04) (No.2015ZB-ZY04)

西安工程大学研究生创新基金资助项目(No.CX201614). (No.CX201614)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文