计算机应用研究2017,Vol.34Issue(5):1329-1332,4.DOI:10.3969/j.issn.1001-3695.2017.05.011
一种改进的降噪自编码神经网络不平衡数据分类算法
Imbalanced data classification algorithm of improved de-noising auto-encoder neural network
摘要
Abstract
Aiming at the noise problems of SMOTE algorithm when synthesizing new minority class samples,this paper proposed a stacked de-noising auto-encoder neural network algorithm based on SMOTE,SMOTE-SDAE.The proposed algorithm balanced the original data sets by using SMOTE to synthesize new minority class samples,and then effectively de-noises and classifies the oversampling data sets through the layer-by-layer unsupervised de-noise learning and supervised fine-tuning process of de-noising auto-encoder neural network given the impact of noise produced in the process of synthesizing samples.Experimental results on UCI imbalanced data sets indicate that compared with traditional SVM algorithms,SMOTE-SDAE algorithm significantly improves the minority class classification accuracy of the imbalanced data sets.关键词
神经网络/过采样/不平衡数据/分类Key words
neural network/over-sampling/imbalanced data/classification分类
信息技术与安全科学引用本文复制引用
张成刚,宋佳智,姜静清,裴志利..一种改进的降噪自编码神经网络不平衡数据分类算法[J].计算机应用研究,2017,34(5):1329-1332,4.基金项目
国家自然科学基金资助项目(61672301,61662057) (61672301,61662057)
内蒙古自然科学基金资助项目(2016MS0336) (2016MS0336)
内蒙古民族大学科学研究资助项目(NMDYB1731) (NMDYB1731)
内蒙古自治区“草原英才工程”基金资助项目(2013) (2013)
内蒙古自治区“青年科技领军人才”基金资助项目(NJYT-14-A09) (NJYT-14-A09)
内蒙古自治区“321人才工程”二层次人选基金资助项目(2010) (2010)