| 注册
首页|期刊导航|计算机应用研究|基于Kullback-Leibler距离的二分网络社区发现方法

基于Kullback-Leibler距离的二分网络社区发现方法

张皓 王明斐 陈艳浩

计算机应用研究2017,Vol.34Issue(5):1480-1483,1486,5.
计算机应用研究2017,Vol.34Issue(5):1480-1483,1486,5.DOI:10.3969/j.issn.1001-3695.2017.05.046

基于Kullback-Leibler距离的二分网络社区发现方法

Algorithm of identifying community in bipartite networks based on Kullback-Leibler divergence

张皓 1王明斐 1陈艳浩2

作者信息

  • 1. 河南工学院计算机科学与技术系,河南新乡453000
  • 2. 河南师范大学网络中心,河南新乡453000
  • 折叠

摘要

Abstract

The usual community detection methods are not applicable to bipartite networks due to their special 2-mode structure.To identifying the community structure of bipartite networks,this paper proposed a novel algorithm based on KullbackLeibler (KL) divergence between the 2-mode nodes.According to the connecting conditions between user set and object set,the algorithm obtained the link probability distribution on user set of bipartite networks,and developed KL similarity as a mettic to evaluate the difference of node link patterns,and then detected the communities in bipartite networks overcoming the limitation of the 2-mode structure on nodes clustering.The experimental results and analysis in compute-generated and real network all show that this algorithm can effectively mine the meaningful community structures in bipartite networks,and improves the performance of community identification in the accuracy and efficiency.

关键词

社区发现/二分网络/连接模式/Kullback-Leibler距离

Key words

community detection/bipartite network/link pattern/Kullback-Leibler divergence

分类

信息技术与安全科学

引用本文复制引用

张皓,王明斐,陈艳浩..基于Kullback-Leibler距离的二分网络社区发现方法[J].计算机应用研究,2017,34(5):1480-1483,1486,5.

基金项目

河南省高等学校重点科研资助项目(15A520063,16A520083) (15A520063,16A520083)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文