| 注册
首页|期刊导航|计算机应用研究|基于最大边界准则的稀疏局部嵌入特征提取方法

基于最大边界准则的稀疏局部嵌入特征提取方法

刘毛溪 万鸣华 孙成立 王巧丽

计算机应用研究2017,Vol.34Issue(5):1560-1564,5.
计算机应用研究2017,Vol.34Issue(5):1560-1564,5.DOI:10.3969/j.issn.1001-3695.2017.05.063

基于最大边界准则的稀疏局部嵌入特征提取方法

Sparse local embedding feature extraction method based on maximum margin criterion

刘毛溪 1万鸣华 2孙成立 1王巧丽3

作者信息

  • 1. 南昌航空大学江西省图像处理与模式识别重点实验室,南昌330000
  • 2. 南昌航空大学信息工程学院,南昌330000
  • 3. 南京理工大学高维信息智能感知与系统教育部重点实验室,南京210094
  • 折叠

摘要

Abstract

The local linear embedding(LLE) was unable to take advantage of the discrimination information of the samples and the maximum margin criterion (MMC) had a weak performance on the nonlinear data.Therefore this paper proposed a feature extraction method called sparse local embedding based on maximum margin criterion (SLE/MMC).With the preservation of local nearest neighbor premise,firstly,the similar samples were gathering together as much as possible in the intrinsic graph.Secondly,the samples of different classes were as far as possible from each other in the penalty graph.Finally,it used the elastic net regression to obtain an optimal sparse projection matrix.In order to avoid the "small sample size" problem,it constructed the objective function by MMC.The experiment results on ORL,Yale and UMIST show that,compared with other methods (PCA,LLE and MMC),SLE/MMC has a higher recognition rate,indicating that this method is more efficient in feature extraction.

关键词

特征提取/局部线性嵌入/最大边界准则/弹性网回归

Key words

feature extraction/local linear embedding/maximum margin criterion/elastic net regression

分类

信息技术与安全科学

引用本文复制引用

刘毛溪,万鸣华,孙成立,王巧丽..基于最大边界准则的稀疏局部嵌入特征提取方法[J].计算机应用研究,2017,34(5):1560-1564,5.

基金项目

国家自然科学基金资助项目(61462064,61272077,61203243,61262019,61362031) (61462064,61272077,61203243,61262019,61362031)

高维信息智能感知与系统教育部重点实验室(南京理工大学)基金资助项目(30920140122006) (南京理工大学)

中国博士后基金资助项目(2014T70453,2013M530223) (2014T70453,2013M530223)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文