| 注册
首页|期刊导航|常州大学学报(自然科学版)|基于核PCA与SVM算法的木材缺陷识别

基于核PCA与SVM算法的木材缺陷识别

马旭 刘应安 业宁 闫贺

常州大学学报(自然科学版)2017,Vol.29Issue(3):60-68,9.
常州大学学报(自然科学版)2017,Vol.29Issue(3):60-68,9.DOI:10.3969/j.issn.2095-0411.2017.03.009

基于核PCA与SVM算法的木材缺陷识别

Application of KPCA and SVM to Wood Defect Recognition

马旭 1刘应安 1业宁 1闫贺1

作者信息

  • 1. 南京林业大学 信息科学技术学院,江苏 南京 210037
  • 折叠

摘要

Abstract

Wood defect is an important factor affecting the wood industrialization promotion.A reasonable wood defect recognition method can effectively avoid the waste of resources caused by wood defects in the practical application.At the same time it can raise the actual utilization of wood.Considering the nonlinear characteristic of wood defects, a new wood defect recognition method is proposed.Firstly, mapping wood original nonlinear data from low dimensional to high dimensional linear feature space using the polynomial kernel function.And then the mapping space of linear dimension reduction processing samples.The purpose is to extract the feature parameters to the samples.Next by means of the SVM model, the polynomial kernel function is selected to complete the wood defect identification.The experimental results show that the proposed method has higher recognition accuracy and efficiency by comparing the data from experiment and the measured data.

关键词

木材缺陷/核函数/主成分提取/支持向量机

Key words

wood defect/kernel function/PCA/SVM

分类

轻工纺织

引用本文复制引用

马旭,刘应安,业宁,闫贺..基于核PCA与SVM算法的木材缺陷识别[J].常州大学学报(自然科学版),2017,29(3):60-68,9.

常州大学学报(自然科学版)

2095-0411

访问量0
|
下载量0
段落导航相关论文