量子电子学报2017,Vol.34Issue(3):316-326,11.DOI:10.3969/j.issn.1007-5461.2017.03.008
首次积分与(n+1)维多重sine-Gordon方程的无穷序列新解
The first integral and new infinite sequence solutions of (n + 1)-dimensional multiple sine-Gordon equation
摘要
Abstract
The solution of (n+1)-dimensional multiple sine-Gordon equation is transformed into solution of the set of ordinary differential equations by several function transformations.New infinite sequence soliton-like solutions of (n + 1)-dimensional multiple sine-Gordon equation are constructed by combining the first integrals of the set of ordinary differential equations with B(a)cklund transformation and the nonlinear superposition formula of solutions to several kinds of solvable ordinary differential equations.关键词
非线性方程/首次积分/(n+1)维多重sine-Gordon方程/B(a)cklund变换/无穷序列类孤子新解Key words
nonlinear equation/the first integral/(n + 1)-dimensional multiple sine-Gordon equation/B(a)cklund transformation/new infinite sequence soliton-like solutions分类
数理科学引用本文复制引用
套格图桑..首次积分与(n+1)维多重sine-Gordon方程的无穷序列新解[J].量子电子学报,2017,34(3):316-326,11.基金项目
Supported by National Natural Science Foundation of China(国家自然科学基金,11361040),Natural Science Foundation of Inner Mongolia Autonomous Region,China(内蒙古自治区自然科学基金,2015MS0128),Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region,China(内蒙古自治区高等学校科学研究基金,NJZY16180) (国家自然科学基金,11361040)