| 注册
首页|期刊导航|四川大学学报(自然科学版)|(2+1)维Konopelchenko-Dubrovsky方程的扰动非行波双孤子和周期解

(2+1)维Konopelchenko-Dubrovsky方程的扰动非行波双孤子和周期解

康晓蓉 鲜大权

四川大学学报(自然科学版)2017,Vol.54Issue(3):477-481,5.
四川大学学报(自然科学版)2017,Vol.54Issue(3):477-481,5.DOI:10.3969/j.issn.0490-6756.2017.03.008

(2+1)维Konopelchenko-Dubrovsky方程的扰动非行波双孤子和周期解

Perturbed non-traveling wave double solitary and periodic solutions for (2 + 1)-D Konopelchenko-Dubrovsky equation

康晓蓉 1鲜大权1

作者信息

  • 1. 西南科技大学理学院,绵阳621010
  • 折叠

摘要

Abstract

Based on the decoupling transformation and the Lie point symmetry group method,the (2+ 1)-D KD equation is reduced to the (1+ 1)-D nonlinear PDE.By extended homoclinic test approach,new perturbed non-traveling wave double solitary solutions of the (2+1)-D KD equation are obtained.Also,the dynamic critical point and the non-traveling wave rational function singular solutions in the limitation of parameters are derived.Applying the Hamilton function in 2-D planar dynamical system,we discuss the existence of the periodic solutions for the symmetrical and reduced equation with the wave transformation.Moreover,some periodic solutions are derived by the Tan-function test method,and then the perturbed non-traveling wave periodic solutions for the (2+1)-D KD equation are shown.

关键词

(2+1)维KD方程/扰动非行波双孤子/Hamilton函数/扰动非行波周期解

Key words

(2+1)-D KD equation/Perturbed non-traveling wave double solitary/Hamilton function/Perturbed non-traveling wave periodic solution

分类

数理科学

引用本文复制引用

康晓蓉,鲜大权..(2+1)维Konopelchenko-Dubrovsky方程的扰动非行波双孤子和周期解[J].四川大学学报(自然科学版),2017,54(3):477-481,5.

基金项目

四川省教育发展研究中心基金(CJF15014) (CJF15014)

国家自然科学基金(11202175) (11202175)

国家自然科学青年基金(12zg2103) (12zg2103)

四川大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0490-6756

访问量0
|
下载量0
段落导航相关论文