四川大学学报(自然科学版)2017,Vol.54Issue(3):477-481,5.DOI:10.3969/j.issn.0490-6756.2017.03.008
(2+1)维Konopelchenko-Dubrovsky方程的扰动非行波双孤子和周期解
Perturbed non-traveling wave double solitary and periodic solutions for (2 + 1)-D Konopelchenko-Dubrovsky equation
摘要
Abstract
Based on the decoupling transformation and the Lie point symmetry group method,the (2+ 1)-D KD equation is reduced to the (1+ 1)-D nonlinear PDE.By extended homoclinic test approach,new perturbed non-traveling wave double solitary solutions of the (2+1)-D KD equation are obtained.Also,the dynamic critical point and the non-traveling wave rational function singular solutions in the limitation of parameters are derived.Applying the Hamilton function in 2-D planar dynamical system,we discuss the existence of the periodic solutions for the symmetrical and reduced equation with the wave transformation.Moreover,some periodic solutions are derived by the Tan-function test method,and then the perturbed non-traveling wave periodic solutions for the (2+1)-D KD equation are shown.关键词
(2+1)维KD方程/扰动非行波双孤子/Hamilton函数/扰动非行波周期解Key words
(2+1)-D KD equation/Perturbed non-traveling wave double solitary/Hamilton function/Perturbed non-traveling wave periodic solution分类
数理科学引用本文复制引用
康晓蓉,鲜大权..(2+1)维Konopelchenko-Dubrovsky方程的扰动非行波双孤子和周期解[J].四川大学学报(自然科学版),2017,54(3):477-481,5.基金项目
四川省教育发展研究中心基金(CJF15014) (CJF15014)
国家自然科学基金(11202175) (11202175)
国家自然科学青年基金(12zg2103) (12zg2103)