| 注册
首页|期刊导航|中国机械工程|基于复合多尺度熵与拉普拉斯支持向量机的滚动轴承故障诊断方法

基于复合多尺度熵与拉普拉斯支持向量机的滚动轴承故障诊断方法

代俊习 郑近德 潘海洋 潘紫微

中国机械工程2017,Vol.28Issue(11):1339-1346,8.
中国机械工程2017,Vol.28Issue(11):1339-1346,8.DOI:10.3969/j.issn.1004-132X.2017.11.014

基于复合多尺度熵与拉普拉斯支持向量机的滚动轴承故障诊断方法

Rolling Bearing Fault Diagnosis Method Based on Composite Multiscale Entropy and Laplacian SVM

代俊习 1郑近德 1潘海洋 1潘紫微1

作者信息

  • 1. 安徽工业大学机械工程学院,马鞍山,243032
  • 折叠

摘要

Abstract

Since the unclear of early fault of rolling bearings and it was difficult to extract the fea-tures from the mechanical systems,a new j udging time series complexity testing method called com-posite multiscale entropy (CMSE)was applied to extract the fault features from the vibration signals of rolling bearings.CMSE overcome the defects of coarse-graining in MSE and was an effective meth-od for measuring the complexity of time series with better consistency and stability.Besides,as it was easy to collect a large number of samples,but difficult to label them in mechanical fault intelligent di-agnosis,the LapSVM was applied to the intelligent fault diagnosis of rolling bearings.Then a new fault diagnosis method for rolling bearings was proposed based on the CMSE,sequential forward se-lection and LapSVM.Finally,the experimental data were analyzed based on the proposed method. The results show that the fault features of rolling bearings are extracted effectively by CMSE,com-pared with SVM that may only be trained by the labeled samples,the LapSVM combining with se-quential forward selection for feature selection and studying from a large number of unlabeled samples may significantly improve the accuracy of fault diagnosis for fewer number of labeled samples.

关键词

多尺度熵/复合多尺度熵/支持向量机/拉普拉斯支持向量机/故障诊断

Key words

multiscale entropy (MSE)/composite multiscale entropy/support vector machine (SVM)/Laplacian support vector machine(LapSVM)/fault diagnosis

分类

信息技术与安全科学

引用本文复制引用

代俊习,郑近德,潘海洋,潘紫微..基于复合多尺度熵与拉普拉斯支持向量机的滚动轴承故障诊断方法[J].中国机械工程,2017,28(11):1339-1346,8.

基金项目

国家自然科学基金资助项目(51505002) (51505002)

安徽省高校自然科学研究重点资助项目(KJ2015A080) (KJ2015A080)

安徽工业大学研究生创新研究基金资助项目(2016061) (2016061)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量0
|
下载量0
段落导航相关论文