| 注册
首页|期刊导航|纺织高校基础科学学报|含不连续系数的时滞微分方程奇摄动边值问题

含不连续系数的时滞微分方程奇摄动边值问题

阳广志 谢峰

纺织高校基础科学学报2016,Vol.29Issue(4):435-442,8.
纺织高校基础科学学报2016,Vol.29Issue(4):435-442,8.DOI:10.13338/j.issn.1006-8341.2016.04.004

含不连续系数的时滞微分方程奇摄动边值问题

Singularly perturbed boundary value problems of differential equations with delay and discontinuous coefficients

阳广志 1谢峰1

作者信息

  • 1. 东华大学应用数学系,上海201620
  • 折叠

摘要

Abstract

A class of singularly perturbed problems of second-order delay differential equations with discontinuous coefficients are studied.The original problem can be viewed as the coupling of the left and right problem.Asymptotic solutions of the left and right problem are constructed by using the method of boundary function respectively,so that the solution of zero order approximation is obtained.To make the solution set up on the whole interval,the sewing method is used.At last,the existence of solution are proved by the theorem of lower and upper solutions.

关键词

时滞/不连续系数/奇摄动/上下解/缝接法

Key words

delay/discontinuity coefficients/singular perturbation/lower and upper solution/sewing method

分类

数理科学

引用本文复制引用

阳广志,谢峰..含不连续系数的时滞微分方程奇摄动边值问题[J].纺织高校基础科学学报,2016,29(4):435-442,8.

基金项目

上海市自然科学基金资助项目(15ZR1400800) (15ZR1400800)

纺织高校基础科学学报

OACSTPCD

1006-8341

访问量0
|
下载量0
段落导航相关论文