| 注册
首页|期刊导航|计算机工程与应用|基于张量的2D-PCA人脸识别算法

基于张量的2D-PCA人脸识别算法

叶学义 王大安 宦天枢 夏经文 顾亚风

计算机工程与应用2017,Vol.53Issue(6):1-6,6.
计算机工程与应用2017,Vol.53Issue(6):1-6,6.DOI:10.3778/j.issn.1002-8331.1608-0390

基于张量的2D-PCA人脸识别算法

Novel 2D-PCA face recognition based on tensor

叶学义 1王大安 1宦天枢 1夏经文 1顾亚风1

作者信息

  • 1. 杭州电子科技大学 模式识别与信息安全实验室,杭州 310018
  • 折叠

摘要

Abstract

The color of facial images is one of the important features in face recognition, but the existing color face recogni-tion based on 2D-PCA ignores its spatial relation. Therefore, a novel approach called Tensor PCA which uses a 3rd-order tensor to represent an RGB color image is proposed. In order to achieve the best classification, it seeks three projection matrices which consist of the eigenvectors corresponding to the largest eigenvalues of the n-mode total scatter matrix to maximize the distance of the projected samples, and constructs an ALS iterative procedure to optimize the projection matrices. As is shown in the results on Georgia Tech face database, in contrast with the process of 2D-PCA the recognition rate increases by 5.53%and the training time decreases by 78.1%.

关键词

人脸识别/色彩信息/二维主成分分析(2D-PCA)/张量

Key words

face recognition/color information/two-Dimensional Principal Component Analysis(2D-PCA)/tensor

分类

信息技术与安全科学

引用本文复制引用

叶学义,王大安,宦天枢,夏经文,顾亚风..基于张量的2D-PCA人脸识别算法[J].计算机工程与应用,2017,53(6):1-6,6.

基金项目

国家自然科学基金青年基金资助项目(No.60802047). (No.60802047)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文