| 注册
首页|期刊导航|计算机工程与应用|基于集成学习的多重集典型相关分析方法

基于集成学习的多重集典型相关分析方法

邱爱昆 朱嘉钢

计算机工程与应用2017,Vol.53Issue(6):162-168,173,8.
计算机工程与应用2017,Vol.53Issue(6):162-168,173,8.DOI:10.3778/j.issn.1002-8331.1510-0147

基于集成学习的多重集典型相关分析方法

Multi-set canonical correlations analysis based on ensemble learning

邱爱昆 1朱嘉钢1

作者信息

  • 1. 江南大学 物联网工程学院,江苏 无锡 214122
  • 折叠

摘要

Abstract

Feature extraction, which has significance to improve the classification performance, is an important problem in pattern recognition. The commonly used feature extraction method includes: Principal Components Analysis, Linear Discriminant Analysis and Canonical Correlations Analysis and so on. Multi-set Canonical Correlations Analysis, which is based on traditional CCA, uses multiple dataset to do feature extraction. This paper proposes a new method EMCCA which combines MCCA with Ensemble learning, divides the sample dataset into some sample datasets and does feature extraction on these datasets. The experimental results on UCI standard sets show that: compared with traditional PCA, CCA, EMCCA has better performance in feature extraction and classification with the help of ensemble learning.

关键词

特征提取/多重集典型相关分析/集成学习/模式识别

Key words

feature extraction/multi-set canonical correlations analysis/ensemble learning/pattern recognition

分类

信息技术与安全科学

引用本文复制引用

邱爱昆,朱嘉钢..基于集成学习的多重集典型相关分析方法[J].计算机工程与应用,2017,53(6):162-168,173,8.

基金项目

江苏省产学研项目(No.BY2013015-40). (No.BY2013015-40)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文