| 注册
首页|期刊导航|数学杂志|非凸集值优化问题严有效解的强对偶定理

非凸集值优化问题严有效解的强对偶定理

余国林 张燕 刘三阳

数学杂志2017,Vol.37Issue(2):223-230,8.
数学杂志2017,Vol.37Issue(2):223-230,8.

非凸集值优化问题严有效解的强对偶定理

STRONG DUALITY WITH STRICT EFFICIENCY IN VECTOR OPTIMIZATION INVOLVING NONCONVEX SET-VALUED MAPS

余国林 1张燕 1刘三阳2

作者信息

  • 1. 北方民族大学应用数学研究所,宁夏银川 750021
  • 2. 西安电子科技大学数学系,陕西西安 710071
  • 折叠

摘要

Abstract

This paper is diverted to the study of two strong dual problems of a primal nonconvex set-valued optimization in the sense of strict efficiency. By using the principles of Lagrange duality and Mond-Weir duality, for each dual problem, a strong duality theorem with strict efficiency is established. The conclusions can be formulated as follows: starting from a strictly efficient solution of the primal problem, it can be constructed a strictly efficient solution of the dual problem such that the corresponding objective values of both problems are equal. The results generalize the strong dual theorems in which the set-valued maps are assumed to be cone-convex.

关键词

严有效性/强对偶/集值优化/生成锥内部凸-锥类凸性

Key words

strict efficiency/strong duality/set-valued optimization/ic-cone-convexlikeness

分类

数理科学

引用本文复制引用

余国林,张燕,刘三阳..非凸集值优化问题严有效解的强对偶定理[J].数学杂志,2017,37(2):223-230,8.

基金项目

Supported by Natural Science Foundation of China (11361001) (11361001)

Natual Science Foundation of Ningxia (NZ14101). (NZ14101)

数学杂志

OACSTPCD

0255-7797

访问量0
|
下载量0
段落导航相关论文