| 注册
首页|期刊导航|传感技术学报|基于径向基神经网络的称重设备传感器故障检测方法

基于径向基神经网络的称重设备传感器故障检测方法

刘洋 欧文 卢赢 卢圣文

传感技术学报2017,Vol.30Issue(6):861-866,6.
传感技术学报2017,Vol.30Issue(6):861-866,6.DOI:10.3969/j.issn.1004-1699.2017.06.010

基于径向基神经网络的称重设备传感器故障检测方法

Fault Detection Method for Weighing Equipment Sensor Based on Radial Basis Function Neural Network

刘洋 1欧文 2卢赢 1卢圣文2

作者信息

  • 1. 中国科学院大学微电子学院,北京 100029
  • 2. 中国科学院物联网研究发展中心,智能传感器工程中心,江苏 无锡 214135
  • 折叠

摘要

Abstract

In the process of digitalization of weighing equipment,some researchers have proposed some faultdiagnosis methods for a particular sensor,but for non-specific sensor or two fault sensors,situation these methods are not ap-plicable. So,this paper presents a method foranyone sensor or two sensors based on RBFNN. Firstly,this paperestab-lish the prediction model of any single sensor and prediction model of any two sensors,and thencalculate any one weighing sensor,s predictive value and any two sensors,predictions,judging the fault weighing sensor,s number,lo-cation,type through the difference between predicted value and actual value. Experiments show that this method can accurately detect the fault information of the sensor when the error of the sensor is above 0.3 tons.

关键词

称重传感器/故障检测/故障类型识别/径向基神经网络

Key words

weighing sensor/fault detection/fault type identification/radial basis function neural network

分类

信息技术与安全科学

引用本文复制引用

刘洋,欧文,卢赢,卢圣文..基于径向基神经网络的称重设备传感器故障检测方法[J].传感技术学报,2017,30(6):861-866,6.

基金项目

江苏省科技支撑重点项目( BE2014003) ( BE2014003)

江苏省自然科学基金项目( BK20161149) ( BK20161149)

传感技术学报

OA北大核心CSCDCSTPCD

1004-1699

访问量0
|
下载量0
段落导航相关论文