| 注册
首页|期刊导航|电力系统及其自动化学报|基于Spiking神经网络的光伏系统发电功率预测

基于Spiking神经网络的光伏系统发电功率预测

陈通 孙国强 卫志农 李慧杰 CHEUNGKWOKW 孙永辉

电力系统及其自动化学报2017,Vol.29Issue(6):7-12,44,7.
电力系统及其自动化学报2017,Vol.29Issue(6):7-12,44,7.DOI:10.3969/j.issn.1003-8930.2017.06.002

基于Spiking神经网络的光伏系统发电功率预测

Power Generation Forecasting for Photovoltaic System Based on Spiking Neural Network

陈通 1孙国强 1卫志农 1李慧杰 2CHEUNGKWOKW 3孙永辉1

作者信息

  • 1. 河海大学能源与电气学院,南京 210098
  • 2. 阿尔斯通电网技术中心有限公司,上海201114
  • 3. 美国阿尔斯通电网技术公司,华盛顿 98052
  • 折叠

摘要

Abstract

A forecasting model based on Spiking neural network (SNN) was proposed in this paper to improve the fore-casting accuracy of power generation from photovoltaic system (PVS) . This neural network uses temporal encoding scheme with precise time of spikes, which is closer to the real biological neural system, thus it has powerful computing capability. Considering the main influencing factors such as season types, weather types and atmospheric temperature, the proposed model uses grey correlation analysis to select similar days. The data from a practical PVS were adopted to test and evaluate the forecasting models based on SNN, back propagation artificial neural network (BP-ANN) and sup-port vector machine (SVM), respectively. The forecasting results reveal that compared with BP-ANN and SVM models, the SNN model has a relatively higher forecasting accuracy and a more robust applicability, which can provide a feasible way to forecast the power generation from PVS.

关键词

光伏系统/Spiking神经网络/SpikeProp算法/相似日选择算法/发电功率预测

Key words

photovoltaic system(PVS)/Spiking neural network(SNN)/SpikeProp algorithm/similar day selection algo-rithm/power generation forecasting

分类

信息技术与安全科学

引用本文复制引用

陈通,孙国强,卫志农,李慧杰,CHEUNGKWOKW,孙永辉..基于Spiking神经网络的光伏系统发电功率预测[J].电力系统及其自动化学报,2017,29(6):7-12,44,7.

基金项目

国家自然科学基金资助项目(51277052,51107032,61104045) (51277052,51107032,61104045)

电力系统及其自动化学报

OA北大核心CSCDCSTPCD

1003-8930

访问量0
|
下载量0
段落导航相关论文