桂林理工大学学报2017,Vol.37Issue(1):136-139,4.DOI:10.3969/j.issn.1674-9057.2017.01.020
基于神经网络的新息自适应卡尔曼滤波在高速公路变形监测中的应用
Application of innovation adaptive Kalman filter based on BP neural network in expressway deformation monitoring
摘要
Abstract
As the dynamic noise and observation noise are non-fixed in practical application,innovation adaptive Kalman filter is used to estimate these noises in real time,to cope with the innovation adaptive Kalman filter which needs a precise model system in practical application.So this paper uses error compensation of BP neural network to improve the filter performance.The result shows that all residuals are not more than 0.25 mm,and the precision of this model is much higher than before,a feasible effect in practical application.关键词
新息/神经网络/补偿/Kalman滤波/高速公路/变形监测Key words
innovation/neural network/compensation/Kalman filter/expressway/deformation monitoring分类
天文与地球科学引用本文复制引用
韩亚坤,文鸿雁,郭雷,王清涛,谢劭峰,孔令帅..基于神经网络的新息自适应卡尔曼滤波在高速公路变形监测中的应用[J].桂林理工大学学报,2017,37(1):136-139,4.基金项目
国家自然科学基金项目(41461089) (41461089)
广西自然科学基金项目(2014GXNSFAA118288) (2014GXNSFAA118288)
广西“八桂学者”岗位专项经费项目 ()
广西空间信息与测绘重点实验室项目(桂科能140452402 ()
130511402) ()
广西矿冶与环境科学实验中心项目(KH2012ZD004) (KH2012ZD004)
广西研究生教育创新计划项目(YCSZ2014151 ()
YCSZ2012083) ()