| 注册
首页|期刊导航|计算机工程与应用|公共空间模式算法结合经验模式分解的EEG特征提取

公共空间模式算法结合经验模式分解的EEG特征提取

张学军 黄婉露 黄丽亚 成谢锋

计算机工程与应用2017,Vol.53Issue(13):9-15,54,8.
计算机工程与应用2017,Vol.53Issue(13):9-15,54,8.DOI:10.3778/j.issn.1002-8331.1703-0199

公共空间模式算法结合经验模式分解的EEG特征提取

EEG signals feature extraction combined with empirical mode decomposition and common spatial pattern

张学军 1黄婉露 2黄丽亚 1成谢锋1

作者信息

  • 1. 南京邮电大学 电子科学与工程学院,南京 210023
  • 2. 江苏省射频集成与微组装工程实验室,南京 210023
  • 折叠

摘要

Abstract

Normal Common Spatial Pattern(CSP)method is restricted to the abundant input channels and lacking fre-quency information. This paper puts forward an improved CSP method combined with the Empirical Mode Decomposition (EMD-CSP)to achieving feature vector by a different component choice. Firstly, the EMD method is proposed to decom-pose the EEG signal into a set of stationary time series called Intrinsic Mode Functions(IMF). Secondly, these IMFs are analyzed with the band-power to detect the valuable IMFs with characteristics of sensorimotor rhythms(5~28 Hz), and then the improved CSP filter is attached to the feature extraction of screening IMFs. Finally, once the feature vector is built, the classification of MI is performed using Support Vector Machine(SVM). The results obtained show that the EMD-CSP allow the most reliable features and that the accurate classification rate obtained is 92% which confirms the feasibility and availability of this method.

关键词

脑电信号/经验模式分解/公共空间模式分解

Key words

Electroencephalogram(EEG)/Empirical Mode Decomposition(EMD)/Common Spatial Pattern(CSP)

分类

医药卫生

引用本文复制引用

张学军,黄婉露,黄丽亚,成谢锋..公共空间模式算法结合经验模式分解的EEG特征提取[J].计算机工程与应用,2017,53(13):9-15,54,8.

基金项目

国家自然科学基金(No.61271334). (No.61271334)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文