| 注册
首页|期刊导航|计算机工程与应用|基于改进的相似度度量的谱聚类图像分割方法

基于改进的相似度度量的谱聚类图像分割方法

邹旭华 叶晓东 谭治英 陆凯

计算机工程与应用2017,Vol.53Issue(13):16-20,5.
计算机工程与应用2017,Vol.53Issue(13):16-20,5.DOI:10.3778/j.issn.1002-8331.1703-0011

基于改进的相似度度量的谱聚类图像分割方法

Image segmentation method based on improved similarity measure of spectral clustering

邹旭华 1叶晓东 2谭治英 2陆凯2

作者信息

  • 1. 中国科学技术大学 信息学院自动化系,合肥 230027
  • 2. 中国科学院 合肥物质科学研究院 先进制造技术研究所,江苏 常州 213164
  • 折叠

摘要

Abstract

Considering the low accuracy of image segmentation method of traditional spectral clustering, an improved similarity measure of spectral clustering is proposed. Firstly, an image is made up of some superpixels by the pre-process of superpixels segmentation algorithm, and a graph based on superpixels is constructed. Secondly, similarity matrix is obtained by the similarity calculation of superpixels, which fully considers the features of superpixels including covari-ance descriptor, color information, texture information and edge information. Finally, NJW algorithm is used to segment the graph based of superpixels. Compared with current unsupervised segmentation algorithm, a lot of experiment results show that the proposed approach has higher segmentation accuracy. Besides, the object marked by user can be segmented precisely using proposed approach.

关键词

谱聚类/图像分割/相似度度量/超像素/协方差/NJW算法

Key words

spectral clustering/image segmentation/similarity measure/superpixels/covariance/NJW algorithm

分类

信息技术与安全科学

引用本文复制引用

邹旭华,叶晓东,谭治英,陆凯..基于改进的相似度度量的谱聚类图像分割方法[J].计算机工程与应用,2017,53(13):16-20,5.

基金项目

国家自然科学基金(No.61401437). (No.61401437)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文