| 注册
首页|期刊导航|计算机工程与应用|基于深度卷积神经网络的快速图像分类算法

基于深度卷积神经网络的快速图像分类算法

王华利 邹俊忠 张见 卫作臣 汪春梅

计算机工程与应用2017,Vol.53Issue(13):181-188,8.
计算机工程与应用2017,Vol.53Issue(13):181-188,8.DOI:10.3778/j.issn.1002-8331.1601-0435

基于深度卷积神经网络的快速图像分类算法

Fast image classification algorithm based on deep convolutional neural network

王华利 1邹俊忠 1张见 1卫作臣 1汪春梅2

作者信息

  • 1. 华东理工大学 信息科学与工程学院,上海 200237
  • 2. 上海师范大学 信息与机电工程学院,上海 200234
  • 折叠

摘要

Abstract

In order to solve large amount of images classification issues, a method is introduced by combining with CUDA-cuDNN and Deep Convolutional Neural Network(DCNN). This method makes advantages of DCNNs to learn features automatically, which makes up the incapability of hand-crafted features. Meanwhile, a cuDNN parallel computing method based on CUDA is employed to improve the speed of training and validation. DCNN is susceptible to parameter perturbation, which employs Batch Normalization(BN) to enhance the robustness. Experimental results indicate that the proposed method not only reduces training time substantially and accelerates validation speed, but also obtains lower classification error rate.

关键词

深度卷积神经网络/CUDA-cuDNN方法/批量正则化/图像分类/深度学习

Key words

Deep Convolutional Neural Network(DCNN)/CUDA-cuDNN/batch normalization/image classification/deep learning

分类

信息技术与安全科学

引用本文复制引用

王华利,邹俊忠,张见,卫作臣,汪春梅..基于深度卷积神经网络的快速图像分类算法[J].计算机工程与应用,2017,53(13):181-188,8.

基金项目

国家自然科学基金(No.61071085) (No.61071085)

上海市教育委员会创新项目(No.14ZZ121). (No.14ZZ121)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文