| 注册
首页|期刊导航|计算机应用与软件|基于稀疏正则化的高维数据可视化分析技术

基于稀疏正则化的高维数据可视化分析技术

陈海辉 周向东 施伯乐

计算机应用与软件2017,Vol.34Issue(6):22-26,119,6.
计算机应用与软件2017,Vol.34Issue(6):22-26,119,6.DOI:10.3969/j.issn.1000-386x.2017.06.005

基于稀疏正则化的高维数据可视化分析技术

HIGH-DIMENSIONAL DATA VISUALIZATION ANALYSIS TECHNOLOGY BASED ON SPARSE REGULARIZATION

陈海辉 1周向东 1施伯乐1

作者信息

  • 1. 复旦大学计算机科学技术学院 上海 200433
  • 折叠

摘要

Abstract

High-dimensional data visualization analysis is the research hotspot in the field of data analysis and visualization, the traditional low-dimensional dimension reduction method is often difficult to explain, and is not conducive to the visualization of high-dimensional data analysis and exploration.In this paper, a new visual explorer (Explainer) method is proposed to introduce the L1 sparse regularization feature selection into the high-dimensional data visualization process, and establish the relationship between high-level semantic tags and a few key features.The feasibility of the method is verified by visual design and experiment.It can improve the visualization performance of high dimensional data effectively.

关键词

高维数据/特征选取/稀疏学习/可视化分析/降维/投影

Key words

high-dimension data/Feature selection/Sparse learning/Visualization analysis/Dimension reduction/Projection

分类

信息技术与安全科学

引用本文复制引用

陈海辉,周向东,施伯乐..基于稀疏正则化的高维数据可视化分析技术[J].计算机应用与软件,2017,34(6):22-26,119,6.

基金项目

国家自然科学基金项目(61370157) (61370157)

上海市科技项目(14511107403) (14511107403)

国网科技项目(5209401600 0A). (5209401600 0A)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文