| 注册
首页|期刊导航|计算机应用与软件|未知状态模型下基于高阶容积卡尔曼滤波和神经网络的状态估计算法

未知状态模型下基于高阶容积卡尔曼滤波和神经网络的状态估计算法

许大星 王海伦

计算机应用与软件2017,Vol.34Issue(6):257-261,5.
计算机应用与软件2017,Vol.34Issue(6):257-261,5.DOI:10.3969/j.issn.1000-386x.2017.06.046

未知状态模型下基于高阶容积卡尔曼滤波和神经网络的状态估计算法

STATE ESTIMATION ALGORITHM BASED ON HIGH ORDER CUBATURE KALMAN FILTER AND NEURAL NETWORK WITH UNKNOWN STATE MODEL

许大星 1王海伦1

作者信息

  • 1. 衢州学院电气与信息工程学院 浙江 衢州 324000
  • 折叠

摘要

Abstract

In view of the nonlinear state model of the system is unknown, this paper presents a state estimation algorithm based on high order cubature Kalman filter and neural network to solve the problem of state estimation of unknown nonlinear system model.The neural network is used to establish the state space model for the nonlinear system.Then, the weight of the neural network and the state of the system variables together are combines as the new state variables.And the new state is updated in real time by high order cubature Kalman filter, so as to achieve the neural network on the nonlinear system model of the real approximation and accurate estimation of the state value.The final target tracking simulation shows that the algorithm has higher estimation accuracy.

关键词

非线性系统/未知模型/高阶容积卡尔曼滤波/神经网络

Key words

Nonlinear system/Unknown model/High order cubature/Kalman filter/Neural network

分类

信息技术与安全科学

引用本文复制引用

许大星,王海伦..未知状态模型下基于高阶容积卡尔曼滤波和神经网络的状态估计算法[J].计算机应用与软件,2017,34(6):257-261,5.

基金项目

国家自然科学基金项目(61403229) (61403229)

浙江省科技厅公益项目(2015C33230). (2015C33230)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文