| 注册
首页|期刊导航|煤田地质与勘探|机器学习算法反求水文地质参数

机器学习算法反求水文地质参数

强玲娟 常安定 陈玉雪

煤田地质与勘探2017,Vol.45Issue(3):87-90,95,5.
煤田地质与勘探2017,Vol.45Issue(3):87-90,95,5.DOI:10.3969/j.issn.1001-1986.2017.03.016

机器学习算法反求水文地质参数

Identification of hydrogeological parameters based on machine learning algorithm

强玲娟 1常安定 1陈玉雪1

作者信息

  • 1. 长安大学理学院,陕西西安 710064
  • 折叠

摘要

Abstract

When solving optimization problem, the traditional method determines the objective function on the ba-sis of the least squares principle without considering the influence of the error of the original measurement data on the results and the accuracy of calculation. Therefore machine learning algorithm is proposed in this paper to im-prove the general objective function and to solve the hydrogeological parameters in combination with particle swarm optimization of double evaluation. The result shows that machine learning algorithm has good convergence and stability as well as high solution efficiency, is simple and easy to realize.

关键词

机器学习/双评价粒子群/水文地质参数

Key words

machine learning/particle swarm of double evaluation/hydrogeological parameters

分类

天文与地球科学

引用本文复制引用

强玲娟,常安定,陈玉雪..机器学习算法反求水文地质参数[J].煤田地质与勘探,2017,45(3):87-90,95,5.

基金项目

陕西省科技计划项目(2015JM1022) Shaanxi Science and Technology Plan Projects(2015JM1022) (2015JM1022)

煤田地质与勘探

OA北大核心CSCDCSTPCD

1001-1986

访问量0
|
下载量0
段落导航相关论文