| 注册
首页|期刊导航|计算机技术与发展|基于Minimum Cuts的蛋白质交互识别

基于Minimum Cuts的蛋白质交互识别

张景 吴红梅 牛耘

计算机技术与发展2017,Vol.27Issue(6):17-21,5.
计算机技术与发展2017,Vol.27Issue(6):17-21,5.DOI:10.3969/j.issn.1673-629X.2017.06.004

基于Minimum Cuts的蛋白质交互识别

Identification of Protein-protein Interaction with Minimum Cuts

张景 1吴红梅 1牛耘1

作者信息

  • 1. 南京航空航天大学 计算机科学与技术学院,江苏 南京210016
  • 折叠

摘要

Abstract

Protein-Protein Interaction (PPI) information is significant for biological and medical research,and is an important content in biomedicine field.The recognition of PPI with large-scale corpus can significantly reduce the cost of manual annotation by directly using the existing PPI database.Therefore,a method for PPI with Minimum Cuts based on the large-scale corpus has been proposed.Based on the framework of relational similarity,Minimum Cuts classifier not only uses SVM to predict the classification initially of a single protein,but also makes use of the similarity between the protein pairs to determine the results which are more accurate.The experimental results show that the Minimum Cuts classifier is better than the SVM classifier for the recognition of PPI.When the training data is 20%,the recognition results of the Minimum Cuts classifier gets better performance than that of an SVM classifier trained with 80%.

关键词

关系相似性/MinimumCuts/支持向量机/蛋白质交互

Key words

relational similarity/Minimum Cuts/SVM/protein-protein interaction

分类

信息技术与安全科学

引用本文复制引用

张景,吴红梅,牛耘..基于Minimum Cuts的蛋白质交互识别[J].计算机技术与发展,2017,27(6):17-21,5.

基金项目

国家自然科学基金资助项目(61202132) (61202132)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文