| 注册
首页|期刊导航|西安电子科技大学学报(自然科学版)|高斯过程回归的CPHD扩展目标跟踪

高斯过程回归的CPHD扩展目标跟踪

李翠芸 王精毅 姬红兵

西安电子科技大学学报(自然科学版)2017,Vol.44Issue(3):8-12,30,6.
西安电子科技大学学报(自然科学版)2017,Vol.44Issue(3):8-12,30,6.DOI:10.3969/j.issn.1001-2400.2017.03.002

高斯过程回归的CPHD扩展目标跟踪

Extended target tracking based on CPHD with Gaussian process regression

李翠芸 1王精毅 1姬红兵2

作者信息

  • 1. 西安电子科技大学电子工程学院,陕西西安710071
  • 2. 中国人民解放军95980部队,湖北襄阳441000
  • 折叠

摘要

Abstract

In view of the complexity of estimating the shape of extended targets and the low accuracy in multiple extended target tracking in the clutters and missed detections,a Gamma Gaussian-mixture cardinalized probability hypothesis density filter with Gaussian Process Regression which can adaptively estimate the shape of the extended targets is proposed.First,the extension of targets is modeled as a starconvex model,and on the basis of good estimation performance for the motion state with the Gamma Gaussian-mixture cardinalized probability hypothesis density filter,the Gaussian Process Regression is used to estimate the shape of extended targets,thus achieving the purpose of tracking the extended target.Simulation shows that the proposed algorithm outperforms the Gamma Gaussian-mixture cardinalized probability hypothesis density filter based on the star convex random hypersurface model in estimation precision and computing speed.

关键词

星凸模型/高斯过程回归/势概率假设密度/形状估计

Key words

star-convex models/Gaussian processes regression/cardinalized probability hypothesis density/shape estimation

分类

信息技术与安全科学

引用本文复制引用

李翠芸,王精毅,姬红兵..高斯过程回归的CPHD扩展目标跟踪[J].西安电子科技大学学报(自然科学版),2017,44(3):8-12,30,6.

基金项目

国家自然科学基金资助项目(61372003) (61372003)

国家自然科学基金青年基金资助项目(61301289) (61301289)

西安电子科技大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-2400

访问量0
|
下载量0
段落导航相关论文