| 注册
首页|期刊导航|噪声与振动控制|基于稀疏表示和SVM的航空发动机故障诊断

基于稀疏表示和SVM的航空发动机故障诊断

巩孟林 陈卫 钟也磐 杜炜 李思路 梁涛

噪声与振动控制2017,Vol.37Issue(3):162-167,6.
噪声与振动控制2017,Vol.37Issue(3):162-167,6.DOI:10.3969/j.issn.1006-1355.2017.03.032

基于稀疏表示和SVM的航空发动机故障诊断

Fault Diagnosis of Aircraft Engines Based on Sparse Representation and SVM

巩孟林 1陈卫 1钟也磐 1杜炜 1李思路 1梁涛1

作者信息

  • 1. 空军工程大学,西安 710038
  • 折叠

摘要

Abstract

Considering the dismantling difficulty of the reducer of an aircraft engine and the necessity of the crack detection in its first grade gear hub, a fault diagnosis method based on sparse representation and support vector machine (SVM) is proposed. Firstly, the sparse representation is used to extract the largest and the secondary largest sparse factors as the feature vectors. Then, the fault is recognized using SVM, which maintains the high recognition accuracy under small training sample capacity condition. The analysis of vibration signals from a simple reducer and an aero-engine proves the efficiency and engineering application value of the proposed method.

关键词

振动与波/航空发动机/故障诊断/稀疏表示/支持向量机

Key words

vibration and wave/aircraft engine/fault diagnosis/sparse representation/SVM

分类

数理科学

引用本文复制引用

巩孟林,陈卫,钟也磐,杜炜,李思路,梁涛..基于稀疏表示和SVM的航空发动机故障诊断[J].噪声与振动控制,2017,37(3):162-167,6.

基金项目

国家自然科学基金资助项目(51175509) (51175509)

噪声与振动控制

OACSCDCSTPCD

1006-1355

访问量0
|
下载量0
段落导航相关论文